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We present rigorous proofs for several theorems on using Pad6 approximants to 
estimate coefficients in perturbative quantum field theory and statistical physics. 
As a result, we find new trigonometric and other identities where the estimates 
based on this approach are exact. We discuss hypergeometric functions, as well 
as series from both perturbative quantum field theory and statistical physics. 

1. INTRODUCTION 

Recently, we proposed (Samuel e t  al. ,  1993a,b, 1994a; Samuel and Li, 
1993, 1994) a method of estimating coefficients in perturbative quantum field 
theory and statistical physics with error bars for each estimate. The method 
makes use of Pad6 approximants and yields a Pad6 approximant approxima- 
tion (PAP). There are many good references for Pad6 approximants, such as 
Zinn-Justin (1971), Nutall (1970), Baker (1975), Bender and Orzag (1978), 
Chlouber e t  al. (1992). We begin by defining the Pad6 approximant 

ao + a~x  + a2x  2 + . . .  + aN XN 
[N /M]  = 1 + b l x  + b z x  2 + b3x  3 + .. .  + bMX M (1.1) 

to the series 

where we set 

S = S O -~- S i x  q- . . .  -}- SN+M XN+M 

IN~M] = S + 0(3(, N+M+I) 

(1.2) 

i Department of Physics, Oklahoma State University, Stillwater, Oklahoma, and Stanford Linear 
Accelerator Center, Stanford University, Stanford, California. e-mail: physmas@mvs.ucc. 
okstate.edu. 

2 Department of Physics and Astronomy, Northwestern University, Evanston, Illinois 60208- 
3112. e-mail: druger@nwu.edu. 

9O3 

0020-7748195/0600-0903507.5010 �9 1995 Plenum Publishing Corporation 

(1.3) 



904 Samuel and Druger 

We have written a computer  p rogram that solves equation (1.3) numeri-  
cally and then predicts the coefficient  o f  the next term SN+M+I. It works for  
arbitrary N and M. Furthermore,  we have derived algebraic formulas  for the 
IN/I] ,  IN/2], [N/3], [N/4], [N/5], and IN/6] PAPs, where N is arbitrary. 

To illustrate the method,  consider  the simple example  

ln(1 + x ) _  1 x x z x 3 (1.4) 
x 

We write the [1/1] Pad6 as 

[1/1] - ao + a l x  (1.5) 
1 + b l x  

It is easy to show that a0 = 1, b~ = 2/3, a~ = 1/6, and C = 9/2. We can 
see that the prediction for  C is close to the correct value C = 4. For x = 1, 
we get [1/1] = 7/10, close to the correct result, In 2 = 0.6931. This is much  
better than the partial sum 

1 1 _ 5 _ 0.8333 (1.6) 
1 - 2 + 3  6 

By going to higher order, it is easy to show that 

1 + x / 2  
[1/2] - 1 + x + x2 / 6  (1.7) 

and for x = 1 we obtain 

9 
m[1/2] - - 0.6923 (1.8) 

13 

very close to In 2. The PAP is 7/36 = 0.1944, very close to the correct value 
of  1/5. 

The  error bars are obtained by taking the reciprocals 

1 
rn = - -  (1.9) 

S. 

and finding the PAP for rn+~, and then taking the reciprocal.  Then we consider 
the differences 

tn = r.+l - r .  (1.10) 

and find the PAP for tn. We then have 

rn+l = rn + tn (1.11) 
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and then take the reciprocal 

1 
S,+l = - -  (1.12) 

rn+l 

Our error bar is calculated from the difference between the results from 
equations (1.9) and (1.12). 

2 .  T H E O R E M S  

We consider the general series 

S = ~ S , x  n (2.1) 
n 

Theorem  A. S u m s  o f  G e o m e t r i c  Series.  If  S, is a sum of M geometric 
series, then the [N/M] PAP for N >-- M - 1 is exact. 

P r o o f  For M = 2, 

S ,  = ar"  + bs n (2.2) 

and 

so that 

& b a 
S = ~ S , x "  - + - -  (2.3) 

. = 0  1 - r x  1 - sx  

S = (a + b) - (as + br)x  (2.4) 
(1 - rx)(1 - sx) 

and the [1/2] and higher PAPs are exact. 
To prove the general case we use mathematical induction. Assume that 

the theorem is true for the [M - 1/M] PAP. Now for M ~ M + 1, we have 

PM-  l + g _ PM-1 + gQM 
(2.5) 

QM 1 -- ax  QM(1 -- ax) 

and the [ M I M  + 1] PAP is exact. Here 

S ,  = ar  n + bs n + . . .  + g w  n (2.6) 

and PM and QM are polynomials of degree M. 

Theorem B. S igns  o f  G e o m e t r i c  Series. For 

S ,  = ( -  1)"Cmar ~ (2.7) 

the  [m - 1/m] PAP is exact. 



906 Samuel and Druger 

Proof  The proof is easily obtained by recognizing that the series in 
equation (2.7) is just a sum of geometric series and by next using Theorem A. 

Theorem C. A Sufficient Condition for  PAPs to Be Accurate. If  we define 

d 2 In S, 
g(n) - dn 2 (2.8) 

then a sufficient (but not necessary) condition for the PAPs to be accurate is 

lim g(n) = 0 (2.9) 

Proof  We define 

and hence 

__ SnSn+2 
A. = 1 § e. -- (Sn+l) 2 (2.10) 

An = 1 + E, = e g(n) (2.11) 

The percent error is expressible in terms of the en and if g(n) ---) O, then 
e, ~ 0 and the PAP is accurate. 

Theorem D. A Generalization o f  Theorem C. If, in addition to the condi- 
tions of  Theorem C for S, we generalize to a series 

T = ~ Tn xn (2.12) 
n 

where 

T, = ( -  1)"c,,sn (2.13) 

then the [m - 1/m] and higher PAPs will be accurate. 

Proof. We have 

I t An = 1 + ~, = (-l)"Cm-2An (2.14) 

where An is given by equation (24). Then we use Theorems B and C to prove 
Theorem D. For further details, see Samuel et al. (1993b). 

Theorem E. Polynomials of  the nth Degree. For Sn = Pn where Pn is a 
polynomial of  degree n, the [N/M] PAPs are exact, where M = n + 1 and 
N > - M  - 1. 

Proof  By differentiating 

S = ~] x n = (1 - x) -1 (2.15) 
n 
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and multiplying by x, we obtain 

(an + b)x n - (a ~ b)x + b (2.16) 
. ( 1  - x) z 

and the [N/2] is exact for N -> 1. Now by induction we can easily obtain the 
desired result. 

It should be emphasized that in all cases once the [N/M] PAPs are exact 
for N --> M - 1, the results remain exact for all higher-order PAPs [N'/M'] 
f o r M '  > M a n d N '  > M ' -  1. 

3. S O M E  N E W  T R I G O N O M E T R I C  I D E N T I T I E S  

If  we consider the series given by 

S n = sin[(n + 1)0 + ~] (3.1) 

where 0 and ~ are arbitrary, we will prove that the [N/M] PAPs are exact 
for M --> 2 and N -> M - 1. This leads to new trigonometric identities 
corresponding to each of  the [N/2], [N/3], [N/4], etc., PAPs. 

From equation (3.1) it can easily be shown that 

S =  ~ Snx ~ 
r~=0 

x cos(0 + ~) sin 0 + sin(0 + ~) (1 - x cos 0) 
1 - 2x cos 0 + x 2 (3.2) 

Hence the IN~M] PAPs are exact for M ~ 2, N --> M - 1. With ~ = 0, 
equation (3.2) becomes 

sin 0 
S =  1 + x  2 -  2 x c o s 0  (3.3) 

and hence the [0/2] PAP is exact. 
Similarly, for 

Sn = cos[(n + 1)0 + ~] (3.4) 

we can obtain 

cos(0 + 8) (1 - x cos 0) - x sin(0 + ~) sin 0 
S =  1 - 2 x c o s 0  + x  2 (3.5) 

In this case, however,  if we set ~ - 0, we obtain 

cos 0 - x 
S =  1 - 2 x c o s 0 + x  z (3.6) 

and the [0/2] PAP is not exact! 
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Now, for each [N/M] PAP that is exact we find a trigonometric identity. 
We begin with M = 2. The [1/2] PAP is given by $4 = N/D, where 

N = 2SIS2S3  - So $2  - S 3 (3.7) 

and 

D = S 2 - SoS2 (3.8) 

with the Sn given by equation (3.1). Thus we have the identity 

N - SaD = 0 (3.9) 

which becomes 

2 sin(20 + 8) sin(30 + 8) sin(40 + 8) 

- sin(0 + 8) sin2(40 + 8) - sin3(30 + 8) 

- sin(50 + 8) [sin2(20 + 8) - sin(0 + 8) sin(30 + 8)] = 0 (3.10) 

Now one can step up in n, Sn --+ Sn+l, and obtain another identity. This 
procedure can be repeated indefinitely. One can also step down in n, S, --+ 
Sn-l,  where we set S-1 = 0. This gives a simpler identity, which can be 
obtained from simple known identities, for the [0/2] PAP. But we must set 
8 = k'rr, k = 0, 1, 2 . . . . .  yielding 

2 sin0 sin(20) sin(30) - sin3(20) - sin(40) sin20 = 0 (3.11) 

One can also use equation (31) to obtain the same identities for cos[(n + 
1)0 + 8]. However, in this case there is no [0/2] identity for 8 = 0. 

We now turn to M = 3. The [2/3] PAP is given by 

$6 = A/B (3.12) 

where 

and 

A = 2S~$3S5 - 2 & $ 2 S 5  + 2SOS3S4S5 

-- 2 S I S 2 S 4 S  5 -I- S 1 S  522 _ SOS2S2 _.}. $2S422 

-- 3 S 2 S 2 S ,  + 2 S I S 3 S ~  - So $3  + S 4 (3.13) 

B = S~ - 2SIS2S3 + So $2 -- S05254 '}- S2S4 (3.14) 

Again we use equation (3.1) and (3.4), but this time there are two identities 
in each case 

A = 0 and B = 0 (3.15) 
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The first part of  equation (3.15) yields new identities, but the second part 
gives only previous identities for M = 2. This is in accordance with a theorem 
presented in an earlier paper (Samuel et al.,  1993b). We can again step up 
in n, Sn ~ Sn+l, and obtain more identities for both sin[(n + 1)0 + ~] and 
cos[(n + 1)0 + ~]. This process may be repeated as many times as desired. 
Now we may very easily also step down in n, Sn ~ Sn_ 1, where we set S_1 
= 0. This gives identities for the [1/3]. In this case the identity obtained 
results from 

A - BS6 = 0 (3.16) 

for both sine and cosine, with ~ :/: n'rr. For the sine case, if ~ = k'rr, we obtain 

A = 0 and B = 0 (3.17) 

If  we step down once more to the [0/3] PAP and set ~ = kTr, then we obtain 
an identity for sine, but not for cosine. 

Although this process can be continued indefinitely for M = 4, 5, 
6 . . . . .  the formulas become increasingly complicated, as will soon be seen. 
So we present results for only one more value of M, namely M = 4. The 
[3/4] PAP is given by 

$8 = C / D  (3.18) 

where 

C = 2(2S2S3S~$7 - $3S4S7 - SLS3S7 

-- 5284S557 "Jr 51S3S4S55v -}- 52S256 -I- 2SIS~$5S6 

q-- S2S452 - S153S452 - S25354S556 - 525356 

_~_ 52S452 @ S254552 2 _ 2S3S34Ss _ S lS4S~  _~ S28255S7 

q- 50S2S557 -]- 51S25257 - 5053S2S7 - S254S557 

- 51S3S4S5S 7 - S253S6S7 - SOS35456S 7 - S2S556S7 

qt_ SOS25556S7 q_ 5152545657 ..}_ S152S6S7 _ 5152S352 

- S385S6 - S15354 S2 - S152S5 S2 -~- 51S3S2S6 

.Jr SOS3S5S2 _ S2S3S3) _ 3S054S2S6 + S2S732 .~_ SoS2S  2 

.Jr. 2 2 50S25452 _[_ S25356 ..[_ _ 51S487 2 2 2 3 -- S I S 6  50S2 s 3  

_]_ 528452 ..}_ S252S6 .~_ S 5 _}_ 2 2  2 2  52S455 --}- S3S4S6 

- s2s s6 + SoS S  + SoS 4 (3.19) 
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and 

D = 2(SIS2S5 + SJS2S4S5 - S IS3S~ 

-- S2S3S5 - S1S253S 6 - SOS3S4S5 ) -.{-- 3S2S2S4 
_ S  4 2 2 -- S i S 5  + 525456 --1- So S3 ..~ SoS2 S2 

..{_ 50S256 S052S456 .+. S3S6 2 2 -- -- 5254  (3.20) 

The identities for the [3/4] PAP are 

C = 0 and D = 0 (3.21) 

for arbitrary ~ in both the sine and cosine cases. Again we may step up Sn 
---> Sn+l, etc., and obtain nw identities. We may also step down to the [2/4] 
PAP. For the [1/4] PAP the identity is obtained for arbitrary ~ from 

C - D S  = 0 (3.22) 

For ~ = kTr we obtain for the sine case the identities 

C = 0 and D = 0 (3.23) 

For the [0/4], for 8 = k-rr, sine works, but not cosine. 
We believe these identities are new, except for the [0/2] PAP. We would 

be interested in hearing from anyone who believes any of these identities 
are already known. 

4. THE GENERALIZED HYPERGEOMETRIC FUNCTION 

The hypergeometric function kFm represents a large number of  elemen- 
tary functions. Thus we can consider PAPs for many functions at once. We 
will see that the PAPs are accurate for arbitrary k and m and a large number 
of parameters a, b, c , . . . .  For many examples of how numerous mathematical 
functions can be expressed in terms of  the hypergeometric function 2F~ or 
the confluent hypergeometric function i Fl see, for example, the books by 
Arfken (1985), Abramowitz and Stegun (1964), and Gradshteyn and 
Rhyzik (1980). 

Consider the hypergeometric series given by 

(a)n(b)n S,, = ~ (4.1) 
(c).n! 

where 

(a) ,  = a(a + 1) ... (a + n + 1) (4.2) 
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and hence 

2Fl(a ,  b, c; x) = ~ ,  S,,x" 
n=O 

For the [N/2] PAP the percentage error is given by 100p, where 

~2N[~.N_ 1 -- EN+I(1 + eN) 2 
P = (1 + eN)2(1 + eN+l) ' N--> 1 

It can be shown for the 2F~ hypergeometric function that 

where 

(4.3) 

(4.4) 

and if k =  m + 1, then 

where 

and hence the PAPs quickly become accurate as N ~ ~. For m Fl(a, c; x) 

(4.6) 

and for 2Fo(a, b, c; x) 

2 
p -  + - -  (4.7) N 2 

2 
p N2 (4.8) 

For the general case kFm, if k ~ m + 1, 

2A 
p N2 (4.9) 

A = k -  (m + 1) (4.10) 

where 

- 2 B ( I  + B) 
p N4 (4.11) 

k 

B = 2 + k 2 - 2k  + m - km + C i  - -  ~ ai (4.12) 
i=1 i=1 

B = c + l - a - b  

-2B(1  + B) 
p N4 (4.5) 
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In general if 

then 

E n ~ A / N  ( 4 . 1 3 )  

p ~ - 2 A 2 / N  2 (4.14) 

and if 

then 

~,, ~ B / N  2 (4.15) 

p - - 2 B ( 1  + B ) / N  4 (4.16) 

To check the behavior for M # 2 we have written a computer program 
that scans over a, b, and c values (skipping over integers) and evaluates the 
corresponding PAPs. The parameters a, b, and c vary from -5 .0  to 5.0 in 
steps of 0.125. For each [ N / M ]  PAP, the fractional error p is evaluated, and 
the maximum and minimum values ofp listed as TESTMAX and TESTMIN, 
respectively. The results for 2F,, ~FI, and 2F0 are presented in Tables I-III, 
respectively. It can be seen that the TESTMIN and TESTMAX values decrease 
rapidly in going to progressively higher order. We have listed only diagonal 
PAPs, but other Pad6's were also computed and gave very good results. 

Table L Pad6 Estimates for 2F1 

[N/M ] TESTMIN TESTMAX 

[4/4] 0.649 X 10 -8 0.649 
[5/5] 0.105 X 10 -9 34.0 
[6/6] 0.103 X 10 - u  2.57 
[7/7] 0.100 X 10 -13 7.0 
[8/8] 0.107 • 10 -t5 0.494 
[9/9] 0.136 X 10 -17 0.687 
[10/10] 0.173 X 10 -19 0.332 
[11/11] 0.284 • 10 -21 0.151 
[12/12] 0.442 X 10 -23 0.215 
[13/13] 0.757 X 10 -25 0.294 
[14/14] 0.151 • 10 -26 0.386 
[15/15] 0.652 • 10 -30 0.492 
[16/16] 0.197 X 10 -29 0.611 
[17/17] 0.705 X 10 -30 0.720 
[18/18] 0.192 X 10 -29 0.847 

X 10 -2 
X 10 -3 
X 10 -4 
X 10 -5 
X 10 -6 
X 10 -7 
x 10 -8 
x 10 -9 
X 10 -I~ 

• 10 -jl 
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Table II .  Pad6 Estimates for IF1 
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[N/M ] TESTMIN TESTMAX 

[4/4] 0.536 X 10 -5 0.246 X 10 -6 
[5/5] 0.170 X 10 -6 6.721 
[6/6] 0.195 • 10 -6 35.4 
[7/7] 0.251 X 10 -6 4.56 
[8/8] 0.124 X 10 -7 0.456 
[9/9] 0.878 X 10 -8 0.102 X 10 -I  
[10/10] 0.835 X 10 -9 0.114 X 10 -2 
[ l U l l ]  0.168 x 10 -8 0.697 X 10 -3 
[12/12] 0.148 • 10 -9 0.260 x 10 -3 
[13/13] 0.394 x 10 -1~ 0.270 • 10 -3 
[14/14] 0.419 X 10 -11 0.676 x 10 -s 
[15/15] 0.157 X 10 - u  0.119 X 10 -5 
[16/16] 0.530 • 10 -~3 0.844 • 10 -6 
[17/17] 0.393 • 10 -13 0.121 X 10 -6 
[18/18] 0.984 X 10 -14 0.201 x 10 -7 
[19/19] 0.259 X 10 -14 0.217 X 10 -8 
[20/20] 0.158 X 10 -14 0.128 • 10 -8 

Table III. Pad6 Estimates for 2F0 

[N/M ] TESTMIN TESTMAX 

[4/4] 0.146 X 10 -4 127.3 
[5/5] 0.118 X 10 -4 45.3 
[6/6] 0.458 • 10 -6 0.304 
[7/7] 0.259 X 10 -5 3.00 
[8/8] 0.986 X 10 -8 0.307 X 10 -1 
[9/9] 0.262 X 10 -8 0.247 X 10 -~ 
[9/10] 0.528 • 10 -8 0.227 X 10 -1 
[10/9] 0.572 X 10 -9 0.298 X 10 -z 
[10/10] 0.590 X 10 -8 0.152 X 10 -t 
[ l l /11] 0.165 X 10 -8 0.774 X 10 -~ 
[13/13] 0.132 X 10 -1~ 0.573 X 10 -4 
[13/14] 0.298 • 10 -~~ 0.227 X 10 -3 
[14/13] 0.214 X 10 -1~ 0.776 X 10 -3 
[16/16] 0.136 x 10 - u  0.151 X 10 -5 
[17/17] 0.377 X 10 -13 0.105 • 10 -6 
[18/18] 0.272 • 10 -13 0.275 • 10 -7 
[19/19] 0.349 X 10 -14 0.729 X 10 -8 
[20/20] 0.296 X 10 -16 0.198 X 10 -8 
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5. OTHER EXAMPLES OF EXACT PAPs 

Other examples can be found in which PAPs are exact. Any series whose 
sum is a rational fraction of two polynomials 

s = 
n=O QMo(X) 

will be exact for the [N/M] PAP where N > No and M --- Mo. Some exam- 
ples include 

S,,= (2n + 1); No= 1, M o = 2  (5.2) 

S n = (n q -  1)2; No = 1, mo = 3 (5.3) 

Sn = (2n+  1)2; N o = 2 ,  Mo= 3 (5.4) 

a n : (a + nd); No = 1, Mo = 2 (5.5) 

S , =  (n + 1); N o = 0 ,  M o = 2  (5.6) 

S , , + , - S , , = ( n + 2 ) ,  So= 1; N o = 0 ,  M o = 3  (5.7) 

and 

Sn : 1; N 0 : 0 ,  M 0 : 1  (5.8) 

6. NONSINGLET MOMENTS OF DEEP INELASTIC 
STRUCTURE FUNCTIONS IN QCD 

In this section we make use of some recent results of Latin et al. (1993). 
They calculated the next-to-next leading QCD approximations for nonsinglet 
moments of deep inelastic structure functions, in the leading twist approxima- 
tion, for the moments N = 2, 4, 6, 8 of the nonsinglet deep inelastic structure 
function FL. They calculated the three-loop anomalous dimensions of the 
corresponding nonsinglet operators and the three-loop coefficient functions of 
the structure factor EL, in the leading twist and massless quark approximation. 

We present our results in Tables IV-XI. In each case, we estimate the 
O(~ 3) coefficient and compare our estimate with the Larin et al. result. We 
neglect the term that depends on the sum of the quark charges E qf, since 
the term is small in all cases of interest. We present our results for Nf = 3, 
4, 5, where Nf is the number of quark flavors. We then present our estimates 
for the next (unknown) O(oL 4) coefficients, in each case. 

In Table IV we present results for Q,2- It is seen that for Ny = 3, 4, 5 
our estimates are within the error bars for the O(~) terms and we estimate 
the next (unknown) O(~ 4) terms. Table V shows the results for CL,4, Table 
VI for CL6, and Table VII for CL,8. 
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Table IV. Pad6 Estimates for CL.2 

Estimate Error Exact IEstimate - Exact[ 

N f =  3 
1,046 1,046 2,230 1,184 

82,812 205,498 - -  - -  

Nf= 4 
837 837 2,313 1,476 

82,233 32,915 - -  - -  

Nf= 5 
652 652 2,420 1,768 

80,203 13,522 - -  - -  

Table V. Pad6 Estimates for CL.4 

Estimate Error Exact [ Estimate - Exact I 

N:= 3 
1,376 668 1,473 137 

56,946 29,021 - -  - -  

N:=4 
1,106 553 1,166 60 

39,468 19,846 - -  - -  

N:= 5 
897 449 881 16 

25,076 4,004 - -  - -  

Table VI. Pad~ Estimates for CL.6 

Estimate Error Exact [Estimate - Exact I 

Nf= 3 
2,305 1,153 1,433 872 

41,989 17,795 - -  - -  

Nf=4 
2,018 1,009 1,159 859 

27,443 12,654 - -  - -  

Nf= 5 
1,750 875 905 845 

15,894 8,434 - -  - -  
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T a b l e  VI I .  Pad6 Es t imates  for CL.8 

Es t ima te  Error  Exac t  IEs t imate  - Exac t  I 

Nf= 3 
1,437 719 1,985 548 

124,711 78,967 - -  - -  

N:=4 
1,226 613 2,043 817 

130,095 139,494 - -  - -  

N:= 5 
1,031 516 2,118 1,087 

133,699 814,125 - -  - -  

T a b l e  V l l I .  Pad6 Es t imates  for ~2 

Es t imate  Error  Exac t  [Est imate  - Exac t  I 

Ny= 3 
424 212 448 24 

5,159 2,270 - -  - -  

N / = 4  
358 179 306 52 

2,607 636 - -  - -  

N:= 5 
298 149 162 136 

677 238 - -  - -  

Tab le  IX.  Pad6 Es t imates  for ~ 

Es t imate  Error  Exac t  IEs t imate  - Exac t  I 

Ny = 3 
636 318 762 126 

8,606 3,146 - -  - -  

Nf=4 
517 259 503 14 

4,953 387 - -  - -  

N:= 5 
410 205 239 175 
954 297 - -  - -  
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Table X. Pad6 Estimates for ~t6 
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Estimate Error Exact IEstimate - Exact I 

Nf= 3 
744 372 946 202 

10,676 4,001 - -  - -  

Nf= 4 
596 298 621 25 

5,245 1,266 - -  - -  

N:= 5 
464 232 290 174 

1,201 348 - -  - -  

Table XI. Pad6 Estimates for ~/8 

Estimate Error Exact IEstimate - Exact] 

Nf= 3 
833 417 1,081 248 

12,225 4,629 - -  - -  

Nf= 4 
662 331 709 47 

6,018 2,552 - -  - -  

N:= 5 
510 255 330 180 

1,401 393 - -  - -  

In Tables V I I I - X I  we present  our results  for the anomalous  d imens ions  
~/2, ~/4, ~6, and "/8. Here again,  in each case our es t imates  are within the error  
bars  o f  the Lar in  et al. results  for O ( a  3) and we es t imate  the next  (unknown)  
O(cx 4) term. For  further detai ls  on how we obta in  our error  bars,  see Sam-  
uel (1994). 

7. E X A M P L E S  F R O M  S T A T I S T I C A L  P H Y S I C S  

In this sect ion we  cons ider  two examples  (Domb,  1974) f rom stat is t ical  
physics .  They  are the low- tempera ture  fe r romagnet ic  suscept ibi l i ty  coeffi-  
cients in the Ising model .  Table XII  gives the results  for the h o n e y - c o m b e d  
(hc) lat t ice and Table XII I  g ives  the results  for the square (sq) lattice. 

It can be seen that the results  are excel len t  and that the percent  error  
decreases  in going to h igher  order. In all cases the es t imates  are within 2o- 
of  the exact  results for  the known coeff icients ,  and the next  (unknown)  
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Table XII. 

Samuel and Druger 

Pad~ Estimates for the Low-Temperature Ferromagnetic Susceptibility 
Coefficients in the Ising Model (he Lattice) 

Estimate Error Exact ] Estimate - Exact I 

8,749 818 8,792 43 
35,682 120 35,622 60 

143,333 447 143,079 254 
569,470 950 570,830 1,360 

2,264,740 631 2,264,649 91 
8,942,853 2,031 8,942,436 417 

35,159,776 8,724 35,169,616 9,840 
137,838,225 5,787 137,839,308 1,083 
538,596,320 10,430 - -  - -  

Table XIII. Pad6 Estimates for the Low-Temperature Ferromagnetic Susceptibility 
Coefficients in the Ising Model (sq Lattice) 

Estimate Error Exact ]Estimate - Exact I 

449 138 416 33 
2,715 830 2,791 76 

18,699 !,592 18,296 403 
118,069 35,392 118,016 53 
751,928 146 752,008 80 

4,747 • 103 1,410 x 103 4,746 x 103 O(103) 
2,973 X 104 721 X 10 4 2973 X 10 4 0 (10  3) 

18,502 X 10 4 5,494 X 104 - -  - -  

coefficient is predicted. For  the hc lattice the estimate is 538,596,000 ___ 
10,500 and for the square lattice it is 185,000,000 __+ 55,000,000. 

8. C O N C L U S I O N S  

We have proved several theorems on using Pad6 approximants to estimate 
coefficients in perturbative quantum field theory and statistical physics. These 
theorems give sufficient conditions for the PAP method of  estimating the 
next term in a series expansion to work. In addition, we have presented new 
trigonometric identities which we obtained as a result o f  the PAP being exact. 
We have also considered the generalized hypergeometr ic  function, for which 
the method works. As a result, many series are dealt with at the same time, 
since the hypergeometric  function can represent many elementary functions 
merely by changing the parameters. 

We have considered several series from QCD. These are for the nonsin- 
glet moments  of  deep inelastic structure functions. We have also considered 
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two series from statistical physics. These are the low-temperature ferromag- 
netic susceptibility coefficients in the Ising model. 

In all cases, the method works beautifully. Thus the information needed 
for estimating the next term in perturbative series is, in fact, contained in 
the lower-order results. 

ACKNOWLEDGMENTS 

One of us (M.A.S.) thanks the theory groups at the Stanford Linear 
Accelerator Center and at the Argonne National Laboratory for their kind 
hospitality. He also thanks the following people for very helpful discussions: 
David Atwood, Bill Bardeen, Richard Blankenbecler, Eric Braaten, Stan 
Brodsky, Helen Perk, Jacques Perk, Tom Rizzo, Davison Soper, George 
Sudarshan, Levan Surguladze, Alan White, and Cosmos Zachos. This work 
was supported by the U.S. Department of Energy under grant no. DE- 
FG02-94ER40852. 

REFERENCES 

Abramowitz, M., and Stegun, I. A. (1964). Handbook of Mathematical Functions, U.S. Govern- 
ment Printing Office, Washington, D.C. 

Arfken, G. (1985). Mathematical Methods of Physics, Academic Press, New York. 
Baker, Jr., G. A. (1975). Essentials of Pad~ Approximants, Academic Press, New York. 
Bender, C., and Orzag, S. (1978). Advanced Mathematical Methods for Scientists and Engineers, 

McGraw-Hill, New York. 
Chlouber, C., Li, G., and Samuel, M. A. (1992). Pad6 approximants--type I and type lI--and 

their application, Oklahoma State University Research Note 265 (February 1992). 
Domb, C. (1974). Ising model, in Phase Transitions and Critical Phenomena, Vol. 3, C. Domb 

and M. S. Green, eds., Academic Press, New York. 
Gradshteyn, I. S., and Ryzhik, J. M. (1980). Tables oflntegrals, Series, and Products, Academic 

Press, New York. 
Larin, S. A., van Ritbergen, T., and Vermaseren, J. A. M. (1993). The next-next-to-leading 

QCD approximation for nonsinglet moments of deep inelastic structure functions, NIKHEF- 
H-93-29 (December 1993). 

Nutall, J. (1970). Journal of Mathematical Analysis, 31, 147. 
Samuel, M. A. (1995). On estimating perturbative coefficients in quantum field theory and 

statistical physics, Oklahoma State University Research Note 290, International Journal 
of Theoretical Physics, 34, 1113. 

Samuel, M. A., and Li, G. (1994). On the R and R~ ratios at the five-loop level of perturbative 
QCD, International Journal of Theoretical Physics, 33, 2207. 

Samuel, M. A., and Li, G. (1994). Physics Letters B, 331, 114. 
Samuel, M. A., Li, G., and Steinfields, E. (1993a). Physical Review D, 48, 869. 



920 Samuel and Druger 

Samuel, M. A., Li, G., and Steinfields, E. (1993b). On estimating perturbative coefficients in 
quantum field theory, condensed matter theory, and statistical physics, Oklahoma State 
University Research Note 278, Physics Review E, May (1995). 

Samuel, M. A., Li, G., and Steinfields, E. (1994a). Physics Letters B, 323, 188. 
Samuel, M. A., Li, G., and Steinfields, E. (1994b). International Journal of Theoretical Physics, 

33, 1461 (1994). 
Zinn-Justin, J. (1971). Physics Reports, 1, 55. 


